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) Generalized recurrence relations for the calculation of multipole matrix elements for
Kratzer potential wave functions are obtained operationaily. These formulas have been deter-
mined by using a non-analytical procedure based on the algebraic representation of the Kratzer
eigenfunctions along with the usual ladder properties and commutation relations. For that,
the creation and annihilation operators are adequately derived by means of an alternative
approach to the factorization method and the exact expressions for matrix elements are
achieved with the aid of a relationship between the ladder operators associated with the bra and
the ket. The proposed algebraic approach as well as the formulas for the calculation of matrix
elements thus derived are quite simple and direct when compared with other alternative expres-
sions already obtained analytically or pseudo-algebraically by means of the hypervirial theo-
rem commutator algebra.

1. Introduction

The Kratzer potential is a useful two particle interaction model that can be
solved for the general case of rotation states different from zero. Although it was
proposed long ago [1], only recently has it been reconsidered with renewed atten-
tion in studies that use Kratzer wave functions as diatomic molecule basis sets [2],
in the calculation of Franck—Condon factors [3] and in the evaluation of two center
matrix elements [4], among others. With respect to the latter, the expectation values
have been obtained analytically using Kratzer wave functions explicitly for a closed
formulation, and pseudo-algebraically with the aid of the hypervirial-like theorem
commutator algebra via recursion relations which are given in terms of integrals
of decreasing order in the variable instead of decreasing order in the bra and ket as
desirable. For that reason, the recurrence formulas already published demand the
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use of more than a single matrix element to begin the recursion process as well as
cumbersome procedures such as the sum rules or Hellman-Feymann theorem in the
evaluation of the needed integrals.

As far as we know, the formal algebraic treatment, based on the ladder operators
formalism, has not been exploited for Kratzer functions in spite of having proven
its usefulness in the calculation of matrix elements for other potential wave func-
tions. Thus, this work is a contribution in which section 2 is devoted to obtaining
the algebraic representation of Kratzer functions. The ladder operators to be dis-
cussed are of two types: those shifting the principal quantum number and the ones
acting on the orbital number, or equivalent. These creation and annihilation opera-
tors are found by using an alternative procedure to the usual Infeld and Hull factor-
ization method. In section 3, as a useful application of the raising and lowering
operators associated with Kratzer functions, generalized recurrence relations for
the calculation of multipole matrix elements are obtained algebraically. These
recursion formulas are derived from the relationship between the ladder operators
related to the bra and ket, the usual creation and annihilation properties and com-
mutation relations.

2. Algebraic representation of Kratzer potential wave functions

Essentially, there are three different ways to obtain ladder operators associated
with any potential wave function: by means of the factorization method [5], by
quantizing classical dynamical variables [6], and by using the algebraic representa-
tion of the orthogonal polynomials directly involved [7]. In this section, in order
to obtain the creation and annihilation operators for Kratzer potential wave func-
tions that are adequated to the purpose of this work, we will consider an alternative
approach [8] to the Infeld and Hull factorization method [S]. The alternative proce-
dure to be used here gives, for a second order differential equation of the type

a(x)f) + B(x,n) f, + E(x,n) f, =0, (1)

linear ladder operator solutions

d
£ __ * + 4
oF = a*(x,nm) + B (x,m) = @

according to the properties

Onfn = fut1 - (3)

In that case, the raising ¢, and the lowering ¢, operators are obtained by solving

(8]
b*(x,n) = AT exp ( / 2a1(x) (d(;ix) + /% (x, n)) dx) (4)




J. Moraleset al. / Kratzer potential algebraic representation 31

and

a*(x, ) [a(x) (d—%—)- (0H(x, n))z) QM (e mB(rnt 1) - E5(x,n)

dx
= b*(x, n)ég% — P*(x,n)(a(x)Q*(x,n) + B(x,n £ 1))
+
~a( ), 5
where
ﬁi(x B (x,n)
0* () - 220 (6
and
_ 1d**(x,n)  b*(x,n) (dB(x,n) _,
PH(x,m) =~ 2 dx? + 2a(x) ( dx +E n))
_Blx,n+1) db*(x,n) ™
20(x) dx

with 8%(x, n) = B(x, n) — B(x, n£ 1) and &= (x, n) = &(x, n) — &(x, n £ 1). This
method lets us obtain ladder operators of various classes, for example, those acting
on the principal and orbital quantum numbers separately depending on the choice
ofeq. (1) as will be seen next.

2.1. LADDER OPERATORS SHIFTING v

We will consider the algebraic representation of the Kratzer wave functions
using the procedure specified in the above paragraph by assuming 4* = F1 here-
after.

According to Fligge [9] the Schrodinger equation for the radial part of the
Kratzer potential is given by

f(v,)\Ru,/\(x) =0 ) (8)
where

- d? A(A -1

Ku,A=ﬁ+—ﬁ—az—(7—) 9)
with o2 = x—-—and)\(/\—l =92+ (I + 1) withy? = 2’""21) Thus, in order

+A) ’
to obtain the corresponding ¥ creation and annihilation operators associated

with Kratzer wave functions, eq. (8)is transformed to

2
2251—1;'27’\(2-)—{— (Z(V+/\)—32-—)\()\“1)>RV,A(Z)ZO, (10)
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where z 26%%)(. In that case, f*(z,v) =0 and &*(z,v) = Fz for which
Q*(z,v) = 0 and P*(z,v) = 1/2. As a consequence, eq. (4) and eq. (5) are solved
to obtain b*(z,v) = Fz and a*(z,v) = —(v+ A) +z/2. That is, according to
eq. (2), the pF ladder operators are then given by

£ _ z_,4
or = (u+A)+2;cde (11)
with properties
@y Rua(2) = 0 Ry 1(2) (12)

where p is related to the normalization constant of the Kratzer wave function for
which it is obtained from the latter. That is, given the normalized wave function

Rv,)\ (Z) - CU,AZAE#Z/ZM(—V: 2A1 Z) 3 (13)

where

1 (v+2x — DI
Cx=D! 2vl(v+N)
is the corresponding dimensionless normalization constant and M (a, b; r) is the

usual confluent hypergeometric function [10], the ladder operators of eq. (11)
applied to the above relation yields

CV,A =

0ER,\(2) = Coazte WEM(—v,2);2), (14)
where

wf:—u+%(zj:z)~()\:i:)\):;:z%. (15)
At this point, it is interesting to note that due to the properties

WEM(—v,2)2) = —(v + A2 DM (=(v £ 1),2)2), (16)

the operators w* can be interpreted as the creation and annihilation operators for
the confluent hypergeometric function. As a result, by using the above properties in
eq. (14) one gets

OER, A(Z) = —Coa(v+ A2 N2 e M (—(v £ 1),2);2). (17)
Thus, the pF coefficient ineq. (12) finally becomes

Cu,/\
py=—

i1/\(1/—%-)\i)\). (18)

2.2. LADDER OPERATORS ACTING ON A

Although the linear ¢F ladder operators for the A number can be straightfor-
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wardly obtained by using factorization type F in eq. (9), in this section we will fol-
low an alternative approach already mentioned. That is, according to eq. (8) and
eq. (9) the Kratzer potential equation is rewritten as

dzRV z 1 1 A /\+1
__d’:'_;'l_(_)—k (??;*Z—*LZT—))RV,,\H(Z) =0, (19)

where we have used a shifting in A. In that case $*(z,A) =0 and £*(z, \)
= +2%(2X + 1 £ 1) for which 0*(z, A) = 0and P*(z, X) = — 5 (2A + 1 £ 1). Thus,
by solvingeq. (4) and eq. (5) one obtains

+ A+1/2+1/2
_20()\+l/2:¥_—1/2)+ z ‘

Finally, the ¢f creation and annihilation operators are given, according to
eq. (2), by

b*(z,A\) =F1 and a*(z,)\) =

i 2 A+1/2+1/2 _d
AT T+ 1/2£1)2) z Tz (20)
with properties
Soj\t_lRu,/\(Z) = pj\i:_IRu,/\:tl (Z) ) (21)
where
Cor v(v+2)) (1) _ Cox
+ = - e = 2 2 —
Pt Coipe1 2A+1) \2X and - piy Cosia-1 @ -1

as previously. Besides, similarly to the case with p, in this new situation pf is also
related to the ladder properties of the creation and annihilation operators asso-
ciated with the corresponding confluent hypergeometric function. In fact, the
equivalent eq. (14), for the A case, follows:

gaf_lR,,,,\(z) = C,,,)\z)‘ile“%f_lM(wv, 27 2), (22)
where
+_ Fl{_ ¥ 1 @x+1D)(1/251/2) _d 5
W=7 ( Wizl 2t z T& (23)
with properties
wi (M(~v,2Xz) =nf \M(-v+£ 1,2\ £ 1);2), (24)
where
2
+ _vw+20) /1 -
M1 = r1 \mx and 7, ; =2)2-1

are the corresponding normalization constants. That is,



314 J. Moralesetal. / Kratzer potential algebraic representation

Cu A

¥

+
1= Copipel
asexpected.

Before considering the algebraic treatment of recurrence relations for the calcu-
lation of matrix elements, it is interesting that the above ladder operators factorize
the corresponding differential equation. In fact, the raising ¢} and the lowering
,, operators specified by eq. (11) factorize eq. (10) by means of

(i) vy =1+20)Rup(2) =0 (25a)
and conversely
(ot — v+ D +2)0))Ra(2) = 0. (25b)

It should be noted that, as far as we know, these ¢ ladder operators have not
been reported in the literature before, in spite of their similarity to the correspond-
ing factorization relations given by Infeld and Hull [5]. In our case, the non-opera-
tional factor in egs. (25) corresponds to the product between the normalization
constants, for v and v + 1 in each case of the orthogonal polynomial directly
involved in the wave function. For example, fromeq. (18)and eq. (252)

Cu—l,,\J [V Cox
Co Coo1n

where —(v + A & A) = nF isrelated to the ladder properties of creation and annihi-
lation operators of the M(—v,2);z) confluent hypergeometric function as given
ineq. (16).

In a similar fashion, the ladder operators acting on ) also factorize its corre-
sponding differential equation by means of

v+ 22 = 1) = |- 1429 | =otier =nom, 9

2
(@'—199; —v(v+2X) (%) )RV,A+1 (z) =0 (27a)
and conversely
1 2
(‘P;H(Pj v +2(A+1)) (m) )RV,A+1(Z) =0, (27b)

where, for example, v(v + 2))(1 /2/\)2 =n}_,ny similarly to the case of ladder
operators acting on v. In short, ifeqs. (25) and egs. (27) are rewritten as

(wfﬂwf — ety )RK(Z) =0, (28)

where k = v or ), depending on the case, this latter relation can be interpreted as
the following rule: the factorization of a second order differential equation is given
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by the product of non-normalized ladder operators associated with the potential
wave function minus the product of the corresponding normalization constants of
the orthogonal polynomial, algebraically given, directly involved in the wave func-
tion under consideration. The above statement is useful for finding normalization
constants and is much simpler than other procedures already developed for a simi-
lar purpose, as for example induction or complicated calculations of expectation
values.

3. Matrix element recurrence relations

In this section, the operational representation of Kratzer potential wave func-
tions is used to obtain, algebraically, recurrence relations for the calculation of 7
matrix elements. However, although related integrals such as ¥*(d°/dr*), d° /dr* and
others are not considered in this work, these can also be obtained by using a similar
treatment. :

When ladder operators are used, many kinds of recurrence relations come from
them depending on the choice of creation and annihilation operators. Particularly,
in this work we are going to consider two different types of recursion formulas:
from ¢ and ¢ . In both cases, in order to simplify the calculations, the correspond-
ing raising and lowering operators are transformed into the x variable. That is, in
the first case, ladder operators given by eq. (11) are rewritten as

d
apf:—(u—l-)\)-}—ax:}:x—ca, (29)

where o = v*/(v + )) as previously indicated. In that case, the corresponding lad-
der properties are then

@yl Ay = plv £ 1,0 (30)

and
W N|@5a = PV F1LX. (31)

Following the procedure displayed in ref. [7], the above properties are used in the
commutation relation

ey, 6] = Fhx* (32)

along with the relationship between the ladder operators % associated with the
bra{V/,N|and pZ related to the ket |v, A,

eE=pt + (V+N) = (v+ ) +x(0-7), (33)

where o’ = 42/(/ + X), in order to obtain the recurrence relations
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e+ ( +N) = (v + NV, Vv — 1,00 = g [V, V|, A
+ (o =)V NFH = 1L,A) = pb (/= LXK v — 1,0 (34)
and
e+ v+ X)) — @/ + MKV = LNy, A = po/, No|v, A
+ (0= = LN XFTu, A — oo (= LNy = 1,4 (35)

As will be seen next, these recursion formulas are very useful in obtaining some
particular cases. Besides, one can avoid the term x**! in the above equations by
using x**t! = x* . x and x**! = x - x*, respectively, where x is given by eq. (29).
That s, the twin recursion formulas (34) and (35) then becomes

OJ+ U ’ I
p:-—l( 20,0')<I/7/\})J(|V?/\>:p;—1<1/ —1,/\]xk[1/—-1,/\>

+ (k—l+(1/+)\’)—(z/——1+)\)aj)<u',)\'|xk[1/—l,/\)

a

G" —
e ( o ") WX — 2,00 (36)
and
LY (";"J) N 2> = gy (Y = LXK = 1,00

+ (k=14 @+ -/ -1 +)\')%)(1/— 1, N[, AD

32 (T ) 20143 7)

It should be noted that in order to get eqgs. (34)-(37) we have used
(Pg::pl = +1 + ¢ asdemanded by the properties of eq. (31).

Let us now consider the recursion formulas for ). Similarly to the above case,
in order to obtain recurrence relations from the creation and annihilation operators
shifting Ain R, y+1(x), it is necessary to consider its ladder properties

XA+ 1) = oy, A+ 14 1) (38)

and
Y, Xl‘Pf’q:l = p,:\t':H(’/’ NF 1 (39)

along with the relationship between ¢ and 3. That s, using
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o (A=X) (1 i’
+_ (T ¢ 1
= (0>%‘ "% (x+()\’+ 12£1/2)(A +1/2+ 1/2)) (40)
in the commutation relation
_ 1
= F o (- ) (41)
leads to the recurrence relations
PA-XN-1)
LA M4 Y U
2= 1) A o 25
A= N =20k —
= pr_ VN |E A= 1) — 202"" ! &N, A
OJ — /7 )at
(D)ot X+ 11w, 2 @
and
PA=XN+1)
LT ) N R
2030 — 1) XXy, A
A= XN+20k+1
— ot N A+ 1) — ;” N0
o’
_ (E_) o N = 1 A (43)
Finally, in a similar way to the v case, in order to eliminate the term x*~! in recur-
sion formulas (42) and (43), there are two alternatives: x*~! = x* . x~1 = x~1 . x*
with x~! given in terms of the % , ladder operators. That s, fromeq. (20)
20
-1 + - 44
X 2)\_1((10A—1+(PA—1)+)\()‘__1) ( )

one obtains the twin recurrence relations

’_ —
()\ +XN =3 zak)p:\‘"_2<z/’,)\'lxk|v, A

20 -3

AV ¥ (A= )\—X—}—Zak)
~(~g)pA,_2<v,A-—1]xk]1/,)\—l>+20()\_1) o -
A= N 420k

x N, A= 1) + ( 3

Joraw XA -2 (49)
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and

A+ XN =3-20k
2N -3

)p;_l<u’,xl:¥‘|u, A

o\ _ AR, 72 AN AN -2k
et — - _1 -
(Z)prac/ s X = 1k, A= 1) 20N — 1) (A—l T2

A— N —20k
2 -3

depending on the choice of ¢} or ¢} respectively.

x (WL N =15y, A — ( )p;c_3<u', N =2, ) (46)

3.1. SOME USEFUL PARTICULAR CASES

It seems at first glance that recursion relations (34) and (35) are not of practical
use, because they contain mixed integrals of x* and x**!. However, in the particular
caseof 0 = ¢’ and v = Oineq. (35) one obtains

(k+A—X—1

4

N0, A = )o/ — 1, X[x¥[0, XD (47)

and similarly for / = Oineq. (34)
k+N-A-v
+

v—1

€0, N x|y, A) = )<0, Nty = 1,2, (48)

where we have used p; = 0if v = 0and p}_, = 0for/ = 0, respectively. It is inter-
esting tonote that eq. (47) can be also written as

N0, 2y = 2= ”j)(f’p"j =1 (/2 X0, 2
VY -1
_@-Va= (/=)@ =2) 5o
PuPy _1Py_2

~Na-W-1))(a-¥-(-1
— (a )(a (__ - )) Ea ( (j ))) <l/, _j, AI]#(IO, /\>, (49)
PyPy—_i " Py_(j-1)
wherea = k — X' + \. Thatis, by doingj— 1/ ineq. (49), the (¢/, N'|x*|0, \) integral
is given in terms of the <0, X|x*|0, A\> lower matrix element by

-1

k+A—-XN~—

(v',)\'|xk|0,)\>=(k(+i = j (Hp,,_s) 0, N[x410,Ay,  (50a)
s=0

where
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T - [ 2 -2
SIJOP'/""_(-I) [(u’+/\')(2/\'-1)y} ‘ (50b)

Symmetrically, eq. (48) becomes

-1
k v
QX1 3y = 2 (Hp,,_s) OXNF,AY,  (5la)
where
v L[+ 23 = DI + )72
e =(D [V (1/4—,\(2,\—)1)(!1/+ )] ‘ (51b)

In any case, the former matrix element is given by
0, N[(0, X = CoxConlk + XN + M) + a0) " “H ™V 200)¥ (200)*, (52)

where o) = %andao = '—f\z—fork-%— N4+ 2>0.

4. Concluding remarks

The purpose of the present work is twofold: to provide the algebraic representa-
tion of Kratzer potential wave functions and to give new recurrence relations for
the calculation of matrix elements. To achieve the first objective, we have used an
alternative procedure to the usual factorization method in order to obtain linear
creation and annihilation operators for the Kratzer potential wave functions.
Advantageously, the proposed approach permits one to determine two kinds of lad-
der operators that characterize any potential wave function by means of a single
multiplicative factor in the original differential equation when needed. On the other
hand, in deduction of matrix elements recursion formulas we have used a single
relationship between the ladder operators associated with the bra and the ket. Such
a proposition permits us to obtain useful relationships that only need the lower
matrix element to begin the recurrence procedure instead of many matrix elements
as reported in equivalent formulas already published. In our case, this is because
the proposed operational approach is applied to the eigenfunctions more than to
the variable or operator between them as usual. In any case, the results and the alge-
braic methods followed in this work are quite simple and direct when compared
with other procedures and formulas used in literature with similar purposes.
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