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Generalized recurrence relations for the calculation of multipole matrix elements for 
Kratzer potential wave functions are obtained operationally. These formulas have been deter- 
mined by using a non-analytical procedure based on the algebraic representation of the Kratzer 
eigenfunctions along with the usual ladder properties and commutation relations. For that, 
the creation and annihilation operators are adequately derived by means of an alternative 
approach to the factorization method and the exact expressions for matrix elements are 
achieved with the aid of a relationship between the ladder operators associated with the bra and 
the ket. The proposed algebraic approach as well as the formulas for the calculation of matrix 
elements thus derived are quite simple and direct when compared with other alternative expres- 
sions already obtained analytically or pseudo-algebraically by means of the hypervirial theo- 
rem commutator algebra. 

1. Introduct ion  

The Kratzer  potential  is a useful two particle interaction model that  can be 
solved for the general case of  rotat ion states different from zero. Al though it was 
proposed long ago [1], only recently has it been reconsidered with renewed atten- 
t ion in studies that  use Kratzer  wave functions as diatomic molecule basis sets [2], 
in the calculation of  F ranck -Condon  factors [3] and in the evaluation of  two center 
matr ix elements [4], among others. With respect to the latter, the expectation values 
have been obtained analytically using Kratzer  wave functions explicitly for a closed 
formulat ion,  and pseudo-algebraically with the aid of  the hypervirial-like theorem 
commuta to r  algebra via recursion relations which are given in terms of  integrals 
of  decreasing order in the variable instead of  decreasing order in the bra and k e t  as 
desirable. For  that  reason, the recurrence formulas already published demand the 
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use of more than a single matrix element to begin the recursion process as well as 
cumbersome procedures such as the sum n~es or Hellman-Feymann theorem in the 
evaluation of the needed integrals. 

As far as we know, the formal algebraic treatment, based on the ladder operators 
formalism, has not been exploited for Kratzer functions in spite of having proven 
its usefulness in the calculation of matrix elements for other potential wave func- 
tions. Thus, this work is a contribution in which section 2 is devoted to obtaining 
the algebraic representation of Kratzer functions. The ladder operators to be dis- 
cussed are of two types: those shifting the principal quantum number and the ones 
acting on the orbital number, or equivalent. These creation and annihilation opera- 
tors are found by using an alternative procedure to the usual Infeld and Hull factor- 
ization method. In section 3, as a useful application of the raising and lowering 
operators associated with Kratzer functions, generalized recurrence relations for 
the calculation of multipole matrix elements are obtained algebraically. These 
recursion formulas are derived from the relationship between the ladder operators 
related to the bra and ket, the usual creation and annihilation properties and com- 
mutation relations. 

2. Algebraic representation o f  Kratzer potential  wave funct ions  

Essentially, there are three different ways to obtain ladder operators associated 
with any potential wave function: by means of the factorization method [5], by 
quantizing classical dynamical variables [6], and by using the algebraic representa- 
tion of the orthogonal polynomials directly involved [7]. In this section, in order 
to obtain the creation and annihilation operators for Kratzer potential wave func- 
tions that are adequated to the purpose of this work, we will consider an alternative 
approach [8] to the Infeld and Hull factorization method [5]. The alternative proce- 
dure to be used here gives, for a second order differential equation of the type 

a(x)f~' + 3(x,n)f~ + ~(x,n)f~ = O, (1) 

linear ladder operator solutions 

± d 
~o~ = a±(x,n) + b (x,n)-d~ x (2) 

according to the properties 

~o~f. =fn±l • (3) 

In that case, the raising ~o + and the lowering ~2 operators are obtained by solving 
[81 
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and 

= b+(x,n) d{(~xn)-- P±(x,n)(a(x)Q+(x,n) +/3(x,n i 1)) 

, , d e  ±(x,  n) 
- m x )  -d;x ' (5) 

where 

and 

Q~: (x, n) =/3+ (x, n) 
2a(x) (6) 

l d2b±(x,n) b±(x,n) (d/3(x,n) ) 
P+(x,n)- 2 dx 2 -k 2a(x) \ dx t-~±(x'n) 

/ 

/3(x,n + 1) db+(x,n) (7) 
2a(x) dx 

with 5+(x, n) =/3(x, n) -/3(x, n + 1) and CL(x, n) = {(x, n) - ((x, n + 1). This 
method lets us obtain ladder operators of various classes, for example, those acting 
on the principal and orbital quantum numbers separately depending on the choice 
ofeq. (1) as will be seen next. 

2.1. L A D D E R  O P E R A T O R S  S H I F T I N G  u 

We will consider the algebraic representation of the Kratzer wave functions 
using the procedure specified in the above paragraph by assuming A ± = ml here- 
after. 

According to Flfigge [9] the Schr6dinger equation for the radial part of the 
Kratzer potential is given by 

k~,~R~,~(x) = o ,  (8) 

where 

d 2 272 o" 2 A(A-1) (9) 
&'~ = )Vx = +  x x 2 

w i t h o a - ( S ~ ? , x =  ~ a n d A ( A - -  1)=72 + l ( l +  1)with72 =-gr-D.2ma= Thus, inorder 
to obtain the corresponding ~o~ creation and annihilation operators associated 
with Kratzer wave functions, eq. (8) is transformed to 

z2d2R~'A(Z) 2 + z(u+)~)- 7-za A(A-1) )R<a(z )=0 ,  (10) 
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where z = ~ T x .  In that case, /3±(z,u)= 0 and ~±(z ,u)=  q:z for which 
Q±(z, u) --- 0 and ei(z ,  u) = 1/2. As a consequence, eq. (4) and eq. (5) are solved 
to obtain b±(z,u)= ~:z and a~:(z ,u)=-(u+ A)+z/2 .  That is, according to 
eq. (2), the ~p~ ladder operators are then given by 

z d 
~ = - ( u +  A)+~qz Z~zz (11) 

with properties 
± 

= Pu Ru i l , ,X ( z ) ,  (12) 

where p~ is related to the normalization constant of the Kratzer wave function for 
which it is obtained from the latter. That is, given the normalized wave function 

R.A(z ) = C~,.~z~e-Z/2M(-u, 2~; z), (13) 

where 

1 [(u + 2 ~ -  1)!]1/2 

is the corresponding dimensionless normalization constant and M(a, b; r) is the 
usual confluent hypergeometric function [10], the ladder operators of eq. (11) 
applied to the above relation yields 

~R.,a(z)  = C~.Azae-~w~M(-u, 2A;z), (14) 

where 

d 
± ( i s )  

At this point, it is interesting to note that due to the properties 

w~M(-u,2)~;z) = - (u  + )~ ± .~)M(-(u ± 1),2A;z), (16) 
± the operators % can be interpreted as the creation and annihilation operators for 

the confluent hypergeometric function. As a result, by using the above properties in 
eq. (14) one gets 

~R~,~(z) = -C~,~(u +/k ± k)z e -~M(-(u± 1),2/k;z). (17) 

Thus, the p~ coefficient in eq. (12) finally becomes 

p~ _ C.,~ (u + A ± A). (18) 
Cu±l,A 

2.2. LADDER OPERATORS ACTING ON 3, 

Although the linear qo~: ladder operators for the A number can be straightfor- 
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wardly obtained by using factorization type F in eq. (9), in this section we will fol- 
low an alternative approach already mentioned. That is, according to eq. (8) and 
eq. (9) the Kratzer potential equation is rewritten as 

d2Rv, A+l(z) (721 1 A ( A + I ) )  
dz 2 t- 7 z 4 z2 R~A+I(z ) = 0 ,  (19) 

where we have used a shifting in A. In that case /3±(z, A ) =  0 and (±(z, A) 
= + ~ (2A + 1 -t- 1 ) for which Q± (z, A) = 0 and P± (z, A) = - ~ (2A + 1 + 1). Thus, 
by solving eq. (4) and eq. (5) one obtains 

72 A + 1/2 ± 1/2 
b ± ( z , A ) = T l  and a ± ( z , A ) = - 2 a ( A + l / 2 ± l / 2 ) +  z 

~o~: creation and annihilation operators are given, according to Finally, the 
eq. (2), by 

72 A + 1/2 + 1/2 d 
+ m -  (20) 2a(A + 1/2 ± 1/2) z dz 

with properties 

~O~_lR~,a(z ) = p~_lR~,.~+l(Z), 

where 

(21) 

Cu,a u(u + 2A) ( 1 )  2 Cu,.', 
P~--1 = C~-l,~+l (2A + 1) , ,2-A and P~-I - C~+l,a-1 (2A-  1) 

as previously. Besides, similarly to the case with pf,  in this new situation p~: is also 
related to the ladder properties of the creation and annihilation operators asso- 
ciated with the corresponding confluent hypergeometric function. In fact, the 
equivalent eq. (14), for the A case, follows: 

+ R = qo;~_ 1 u,a(z) Cu,)~z;~+le-{cO~_lM(-u, 2A;z) 

where 

= (- 4 
2cr(A + 1/2 + 1/2) z 

with properties 

co~:_lM(-u, 2A; z) = r/~:_lM(-u + 1,2(A + 1); z), 

where 

~--1 u(u+2A) ( 1 )  2 
-- 2 A + l  2-A and r/~-_l = 2 A - 1  

are the corresponding normalization constants. That is, 

(22) 

1 ) ( 1 / 2 m  1/2) 
+ m i z  ) (23) 

(24) 
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C~,2, r]~_ 1 

as expected. 
Before considering the algebraic treatment of recurrence relations for the calcu- 

lation of matrix elements, it is interesting that the above ladder operators factorize 
the corresponding differential equation. In fact, the raising ~%+ and the lowering 
~o~- operators specified by eq. (11) factorize eq. (10) by means of 

+ - (~ . - I~ .  - . (u  - 1 + 2A))R.,~(z) = 0 (25a) 

and conversely 

- + 1)(u + 2A))R~,~(z) 0. (258) _ -  

I t  should be noted that, as far as we know, these ~o~ ladder operators have not 
been reported in the literature before, in spite of their similarity to the correspond- 
ing factorization relations given by Infeld and Hull [5]. In our case, the non-opera- 
tional factor in eqs. (25) corresponds to the product between the normalization 
constants, for u and u + 1 in each case of the orthogonal polynomial directly 
involved in the wave function. For example, from eq. (18) and eq. (25a) 

E c,,_,,. , lr c,.,,, 1 + + _ 
- = - L U - - C ~ - l , ~ J  = p~-  = ( 2 6 )  / T v -  1 TIv u ( u + 2 ~  1) (u 1 + 2 ~ ) - - ~ , ~ j  p~-i 

where - ( u  + ~ ± ~) = ~7~ is related to the ladder properties of creation and annihi- 
lation operators of the M ( - u ,  2/~; z) confluent hypergeometric function as given 
ineq. (16). 

In a similar fashion, the ladder operators acting on ~ also factorize its corre- 
sponding differential equation by means of 

~-~_¢p-~ - u(u + 21) ~-~ R.,~+I (z) = 0 (27a) 

and conversely 

~+1~°~- - u(u + 2(a + 1)) 2(), + 1) R.,~+,(z) = 0, (27b) 

where, for example, u(u + 2~)(1/2~) 2 = 77~- 177~ similarly to the case of ladder 
operators acting on u. In short, ifeqs. (25) and eqs. (27) are rewritten as 

± :F ± ZF (~o,¢~:1¢p, ¢ - ~l,,:~l~,¢ )R,¢(z) = 0 (28) 

where ~ = u or ~, depending on the case, this latter relation can be interpreted as 
the following rule: the factorization of a second order differential equation is given 
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by the product of non-normalized ladder operators associated with the potential 
wave function minus the product of the corresponding normalization constants of 
the orthogonal polynomial, algebraically given, directly involved in the wave func- 
tion under consideration. The above statement is useful for finding normalization 
constants and is much simpler than other procedures already developed for a simi- 
lar purpose, as for example induction or complicated calculations of expectation 
values. 

3. Matr ix  e l e me nt  recurrence  re lat ions  

In this section, the operational representation of Kratzer potential wave func- 
tions is used to obtain, algebraically, recurrence relations for the calculation of r ~ 
matrix elements. However, although related integrals such as rk(dS/dr~), dS/dr ~ and 
others are not considered in this work, these can also be obtained by using a similar 
treatment. 

When ladder operators are used, many kinds of recurrence relations come from 
them depending on the choice of creation and annihilation operators. Particularly, 
in this work we are going to consider two different types of recursion formulas: 
from qa~ and qo~:. In both cases, in order to simplify the calculations, the correspond- 
ing raising and lowering operators are transformed into the x variable. That is, in 
the first case, ladder operators given by eq. (11) are rewritten as 

d 
qo~ = - ( v  + ,k) + crx q: X~x , (29) 

where cr = 72/(v + ~) as previously indicated. In that case, the corresponding lad- 
der properties are then 

and 

¢p~iv, A) i__ p~lv + 1,A> (30) 

.x = ::F 1,,X'l. (31) 

Following the procedure displayed in ref. [7], the above properties are used in the 
commutation relation 

[qo~, x k] = q:kx k (32) 

along with the relationship between the ladder operators qo~ associated with the 
bra ( g ,  ~'l and qo~ related to the ketlv, )~), 

~ = ~ + (v' + ~') - (v + ~) + x (c r -  ~ ) ,  (33) 

where d = .y2/(j  + )(), in order to obtain the recurrence relations 
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[k + ( J  + A') - (v + A)](Y, ~'lxklv - 1, ~) - p + ,  ( t / ,  ~'lxkl~, ~)  

+ (o ~ - ~)<~/, A'I xk+~ Iv - 1, A) - P+-I ( v / -  1, A'lx~l ~ - 1, A) (34) 

and 

[k+ (v+  ~) - ( J  + ~')]<J - 1, ~'lxkl~, A> - -  p ~ ( t / ,  ~'lx~l~, ~> 

+ (or - cr')(Y - 1, ~'lxk+' I~, ~> - p~-(Y - 1, ~'lx~l~ - 1, A).  (35) 

As will be seen next, these recursion formulas are very useful in obtaining some 
particular cases. Besides, one can avoid the term ~+1 in the above equations by 
using x k+l --- x k- x and x k+l = x- x k, respectively, where x is given by eq. (29). 
That  is, the twin recursion formulas (34) and (35) then becomes 

+ ( - ~ )  (d,  A'lxklv, A) ,o~+_l(v' - 1, A'lxklv - 1, A) Pv-I = 

+ ( k -  I + (Y + A') - ( v -  I + A ) ~ ) ( Y , A ' I x k I v -  I ,A)  

- p~_l ( - ~ a  a )  (Y, XJxklv - 2, A) (36) 

and 

_ { ~  + ~"~ 
p~ t - - 5 7 / ( . ' ,  A'lx~l., A> \ / = p ~ < J -  1, A'lx~l.-  1,A) 

+ ( k - 1  + ( u + A ) - ( Y - 1  + A ' ) ~ )  (v'  - 1, A'lxklv, A) 

f~- d\ , 
- P+-z ~ )  (u  - 2, A'lxkl u, A).  (37) 

It should be noted that in order to get eqs. (34)-(37) we have used 
± = +1 + ~ as demanded by the properties ofeq. (31). qOv~:l 

Let us now consider the recursion formulas for A. Similarly to the above case, 
in order to obtain recurrence relations from the creation and annihilation operators 
shifting A in R~,,a±l (x), it is necessary to consider its ladder properties 

~1~, A + 1) = p~:lv, A + 1 :t: 1) (38) 

and 

(# ,  ' ± A' I I .X I~,.~ = p~,.~(g, m 

along with the relationship between ~o~: and ~ , .  That  is, using 

(39) 
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~ =  ~ ~ ' +  2 ~  
in the  c o m m u t a t i o n  re la t ion 

1 ~: 

leads  to the  recur rence  re la t ions  

(/V + 1/2 ± 1/2)()~ + 1/2 ± 1/2)  
(40) 

(41) 

= pLl<U',  A'lxklu, A - 1) - 

A - A' - 2~rk - 1 

2~r 
<J, ~X'lxk-11~, ~X> 

and  

- @ ) p > < d , A '  + llxklv, A> (42) 

7z(a - a'  + I) 

+ , A A' = pa_l(U, A, ixklv, A + 1) - -F 2~rk + 1 2~ (d,  ,X'I xk-I [u, ),) 

p~,_2<g, A - llxklv, A>. (43) 

Final ly,  in a s imilar  w a y  to the u case, in order  to e l iminate  the t e rm x k-1 in recur-  
s ion fo rmulas  (42) and  (43), there  are two al ternatives:  ~ - 1  = x k "x-1 = x-1 . x k 
wi th  x -1 given in te rms o f  the ~o~_ 1 ladder  opera tors .  Tha t  is, f r om eq. (20) 

2~ (~L~ + ~;-l) X-1 =2 1 ~(~-1)  (44) 

one ob ta ins  the twin recur rence  re la t ions  

2crk\ + , A + A'-2~.__33- .)pa_2(u, ~,lx~l~,, ~ > 

-- P ~ ' - 2 ( u " A ' -  l lxklL"A- l > + 2 c r ( A -  1) \ A ' -  1 -+ ~----2 / 

× <J,  ~'lxkl ~, ~ - 1> + (~  - x' + 2~k'x , j  ~T-- 5 )pL2~, ,~'lxkl~', ~ -  2) (45) 
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a n d  

@ + A ' -  3 -  2~k) _ , A, ixkl~, A> 

= ( ~ ) p ~ _ l ( L i ,  A ' -1 ]xAI~ ,A - 1) 2 & ( A ' - 1 ) ~ - - i  - +  A 1 - 2  J 

@/,A'  - l[xkl~,,A) - ( A -  A ' -  2crk\ + ' - ~  ~ -J pA,_3(v', A' -- 21~1~,, A> (46) × 

depend ing  on  the choice o f  ~ -  or cp~ respectively.  

3. I. SOME USEFUL PARTICULAR CASES 

It  seems at first glance that  recurs ion relat ions (34) and  (35) are  no t  o f  pract ica l  
use, because  they conta in  mixed  integrals  o f x  k and  x k+l . However ,  in the par t i cu la r  
case of~r = d and  v = 0 ineq.  (35) one obtains  

( J ,  A'lxkl 0, A) = (k + ~ - A' - J )  @, _ 1, A'lxkl 0, ~) (47) 
p3 

and  similarly for  ~,' = 0 in eq. (34) 

(o, A'lxkl ~, A) = (k + A' - A - ~) + (0, A'lxkl ~ - 1, A) ,  (48) 
Pu-1 

where  we have  used p~- = 0 i f u  = 0 and  P+-i  = 0 for 1 / =  0, respectively.  It  is inter-  
est ing to no te  tha t  eq. (47) can be also wr i t ten  as 

(~,1 ~,lxkl o, A) = (a - g ) ( a  - ( J  - 1)) (~, _ 2, ,Vlxkl o, A) 
P~P~-I  

= (a - v/)(a - (v / - 1))(a - (v / - 2)) ( L / -  3, A'lx~l 0, A> 
p~/pv - lp~-2  

= (a - v/)(a - (v,' - 1 ) ) . . .  (a - ( t / -  (j - 1))) ( ,  - J ,  A, ixkl0, A),  (49) 
P~P~-I  " "" P~-(j-1) 

where  a = k - A / + A. T h a t  is, by  d o i n g j  --~ # in eq. (49), the ( # ,  A/Ix k [0, A) integral  
is given in t e rms  o f  the (0, A'lxk[0, A) lower  ma t r i x  e lement  by 

- - p ? ~ _ =  (0, ~'lxkl 0, A>, (50a) ( d ,  ,Vlxkl 0, A> --- (k + A A, i )l ks=O 

where  
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v-1 [#!A,(# + 2~, _ l~.V!] 1/2 I ~  P~-~ = (-1)~ [ - ~  7 - ~ S  -- (505) 
s=O 

Symmetrically, eq. (48) becomes 

(k + A' - A - 1)! + (0, A'lx 10, A>, (51a) 
(0, = (k + - A - Y  -7,)! 

where 

I pL = ( _ i V  • =1 A(2A- 1)! (51b) 

In any case, the former matrix element is given by 

(0, A'lxk[O, A) = Co,~,,Co,:,(k + A' + A)!(4 + ~ro)-(~+l+~'+~)(24)~'(2ao) a , (52) 

where#o = ~ a n d a o  = ~ f o r k  + A' + A>O. 

4. Concluding remarks 

The purpose of the present work is twofold: to provide the algebraic representa- 
tion of Kratzer potential wave functions and to give new recurrence relations for 
the calculation of matrix elements. To achieve the first objective, we have used an 
alternative procedure to the usual factorization method in order to obtain linear 
creation and annihilation operators for the Kratzer potential wave functions. 
Advantageously, the proposed approach permits one to determine two kinds of lad- 
der operators that characterize any potential wave function by means of a single 
multiplicative factor in the original differential equation when needed. On the other 
hand, in deduction of matrix elements recursion formulas we have used a single 
relationship between the ladder operators associated with the bra and the ket. Such 
a proposition permits us to obtain useful relationships that only need the lower 
matrix element to begin the recurrence procedure instead of many matrix elements 
as reported in equivalent formulas already published. In our case, this is because 
the proposed operational approach is applied to the eigenfunctions more than to 
the variable or operator between them as usual. In any case, the results and the alge- 
braic methods followed in this work are quite simple and direct when compared 
with other procedures and formulas used in literature with similar purposes. 
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